While the exact mechanism of action is unknown, pre-clinical publications suggest the use of ADRCs has been associated with improvements in angiogenesis, inflammation and fibrosis.


In pre-clinical studies, ADRCs have been shown to promote angiogenesis, or the creation of new blood vessels from pre-existing vessels. Application of these cells has also been associated with improvement of vasomotor function.1,2,3,4,5


In pre-clinical studies, use of ADRCs has been shown to be associated with modulation of inflammation through expression of factors that regulate both pro- and anti-inflammatory cells. This includes processes such as polarization of macrophages and inhibition of T cell activation.3,6,7,8,9

Fibrosis/Wound Repair

In pre-clinical studies use of ADRCs has been associated with reduction and remodeling of fibrosis. This is mediated by modulation of expression of extracellular matrix components and remodeling enzymes.2,10,11

A New Approach to Addressing Poorly Met Medical Needs
ADRCs, the active component of Cytori Cell Therapy, have the potential to harness the power of a patient’s own cells to promote healing.

  • 1. Foubert P, Gonzalez A, Teodosescu S, Berard F, et al. Adipose-derived regenerative cell therapy for burn wound healing: a comparison of two delivery methods. Adv Wound Care. 2015;4(11). http://online.liebertpub.com/doi/abs/10.1089/wound.2015.0672?journalCode=wound
  • 2. Koh Y, Koh B, Kim H, Joo H, et al. Stromal vascular fraction from adipose tissue forms profound vascular network through the dynamic reassembly of blood endothelial cells. Arterioscler Thromb Vasc Biol. 2011;31(5):1141-50. doi: 10.1161/ATVBAHA.110.218206.
  • 3. Premaratne G, Ma L, Fujita M, Lin X, et al. Stromal vascular fraction transplantation as an alternative therapy for ischemic heart failure: anti-inflammatory role. J Cardiothorac Surg. 2011;6:43. doi: 10.1186/1749-8090-6-43.
  • 4. Morris M, Beare J, Reed R, Dale J, et al. Systemically delivered adipose stromal vascular fraction cells disseminate to peripheral artery walls and reduce vasomotor tone through a CD11b+ cell-dependent mechanism. Stem Cell Transpl Med. 2015;4(4): 369-80. doi: 10.5966/sctm.2014-0252.
  • 5. Eguchi M, Ikeda S, Kusumoto S, Sato D, et al. Adipose-derived regenerative cell therapy inhibits the progression of monocrotaline-induced pulmonary hypertension in rats. Life Sci. 2014;118(2):306-12. doi: 10.1016/j.lfs.2014.05.008.
  • 6. Feng Z, Ting J, Alfonso Z, Strem B, et al. Fresh and cryopreserved, uncultured adipose tissue-derived stem and regenerative cells ameliorate ischemia-reperfusion-induced acute kidney injury. Nephrol Dial Transpl. 2010;25(12):3874-84. doi: 10.1093/ndt/gfq603.
  • 7. Hao C, Shintani S, Shimizu Y, Kondo K, et al. Therapeutic angiogenesis by autologous adipose-derived regenerative cells: comparison with bone marrow mononuclear cells. Am J Physiol Heart and Circ Physiol. 2014;307(6): H869-79. doi: 10.1152/ajpheart.00310.2014.
  • 8. Dong Z, Peng Z, Chang Q. The survival condition and immunoregulatory function of adipose stromal vascular fraction (SVF) in the early stage of nonvascularized adipose transplantation. PLos One. 2013;8(11): e80364. doi: 10.1371/journal.pone.0080364.
  • 9. Baulier E, et al. Characterization of the porcine Stromal Vascular Fraction (SVF) and evaluation of the therapeutic potential in order to use in a preclinical model of porcine kidney transplantation. Data on file (Cytori).
  • 10. Serratrice N, Bruzzese L, Magalon J, Véran J, et al. New fat-derived products for treating skin-induced lesions of scleroderma in nude mice Stem Cell Res Ther. 2014;5(6):138. doi: 10.1186/scrt528.
  • 11. Boissier R, Karsenty G. Réunion de travail tissu graisseux-fraction vasculaire stromale. Applications en urologie incontinence urinaire. Data on file (Cytori).

Why Cytori Cell TherapyTM?

Cytori Cell Therapy is comprised of an autologous, heterogeneous, readily accessible, cell population that is the result of more than a decade of rigorous research and development.


Advanced Technology, Convenient For the Patient

Cytori Cell Therapy is being developed as a therapy to be delivered in a single treatment, designed to avoid the need for frequent re-treatment.


Same-Day Cell Therapy

Cytori Cell Therapy eliminates the requirement for cells to be shipped to off-site facilities. Cells can be harvested in the hospital and processed on-site for faster care.


Safety Profile

The use of ADRCs in pre-clinical and clinical studies has been shown to be well-tolerated. Hundreds of patients have been treated with ADRCs in multiple clinical trials across the world. Cytori’s approach to cell therapy avoids the risk of rejection.

  • 1. Granel B, Daumas A, Jouve E, Harlé J. et al. Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis: an open-label phase I trial. Ann Rheum Dis. 2014;0:1–8. doi: 10.1136/annrheumdis-2014-205681.
  • 2. Guillaume-Jugnot P, Daumas A, Magalon J, Jouve E, et al. Autologous adipose-derived stromal vascular fraction in patients with systemic sclerosis: 12-month follow-up. Rheumatol. 2016:55(2):301-6. doi: 10.1093/rheumatology/kev323.
  • 3. Gotoh M, Yamamoto T, Kato M, Majima T, et al. Regenerative treatment of male stress urinary incontinence by periurethral injection of autologous adipose-derived regenerative cells: 1-year outcomes in 11 patients. Intl J Urol. 2014;21(3):294-300. doi: 10.1111/iju.12266.
  • 4. Perez-Cano R, Vranckx J, Lasso J, Calabrese C, et al. Prospective trial of adipose-derived regenerative cell (ADRC)-enriched fat grafting for partial mastectomy defects: the RESTORE-2 trial. Eur J Surg Onc. 2012;38(5): 382-9. doi: 10.1016/j.ejso.2012.02.178.
  • 5. Daumas, A. et al.  “Long-term follow-up after autologous adipose-derived stromal vascular fraction injection into fingers in systemic sclerosis patients.”  Current Research in Translational Medicine.  2016.